Cooperation between EZH2, NSPc1-mediated histone H2A ubiquitination and Dnmt1 in HOX gene silencing
نویسندگان
چکیده
An intricate interplay between DNA methylation and polycomb-mediated gene silencing has been highlighted recently. Here we provided evidence that Nervous System Polycomb 1 (NSPc1), a BMI1 homologous polycomb protein, plays important roles in promoting H2A ubiquitination and cooperates with DNA methylation in HOX gene silencing. We showed that NSPc1 stimulates H2A ubiquitination in vivo and in vitro through direct interaction with both RING2 and H2A. RT-PCR analysis revealed that loss of NSPc1, EZH2 or DNA methyltransferase 1 (Dnmt1), or inhibition of DNA methylation in HeLa cells de-represses the expression of HOXA7. Chromatin immunoprecipitation (ChIP) assays demonstrated that NSPc1, EZH2 and Dnmt1 bind to the promoter of HOXA7, which is frequently hypermethylated in tumors. Knockdown of NSPc1 results in significant reduction of H2A ubiquitination and DNA demethylation as well as Dnmt1 dissociation in the HOXA7 promoter. Meanwhile Dnmt1 deficiency affects NSPc1 recruitment and H2A ubiquitination, whereas on both cases EZH2-mediated H3K27 trimethylation remains unaffected. When EZH2 was depleted, however, NSPc1 and Dnmt1 enrichment was abolished concomitant with local reduction of H3K27 trimethylation, H2A ubiquitination and DNA methylation. Taken together, our findings indicated that NSPc1-mediated H2A ubiquitination and DNA methylation, both being directed by EZH2, are interdependent in long-term target gene silencing within cancer cells.
منابع مشابه
Role of remodeling and spacing factor 1 in histone H2A ubiquitination-mediated gene silencing.
Posttranslational histone modifications play important roles in regulating chromatin-based nuclear processes. Histone H2AK119 ubiquitination (H2Aub) is a prevalent modification and has been primarily linked to gene silencing. However, the underlying mechanism remains largely obscure. Here we report the identification of RSF1 (remodeling and spacing factor 1), a subunit of the RSF complex, as a ...
متن کاملRole of hPHF1 in H3K27 methylation and Hox gene silencing.
Polycomb group (PcG) proteins are required for maintaining the silent state of the homeotic genes and other important developmental regulators. The silencing function of the PcG proteins has been linked to their intrinsic histone modifying enzymatic activities. The EED-EZH2 complex, containing the core subunits EZH2, EED, SUZ12, and RbAp48, functions as a histone H3K27-specific methyltransferas...
متن کاملUBR2 mediates transcriptional silencing during spermatogenesis via histone ubiquitination.
Ubiquitination of histones provides an important mechanism regulating chromatin remodeling and gene expression. Recent studies have revealed ubiquitin ligases involved in histone ubiquitination, yet the responsible enzymes and the function of histone ubiquitination in spermatogenesis remain unclear. We have previously shown that mice lacking the ubiquitin ligase UBR2, one of the recognition E3 ...
متن کاملSilencing of unpaired chromatin and histone H2A ubiquitination in mammalian meiosis.
During meiotic prophase in male mammals, the X and Y chromosomes are incorporated in the XY body. This heterochromatic body is transcriptionally silenced and marked by increased ubiquitination of histone H2A. This led us to investigate the relationship between histone H2A ubiquitination and chromatin silencing in more detail. First, we found that ubiquitinated H2A also marks the silenced X chro...
متن کاملHistone H2A Mono-Ubiquitination Is a Crucial Step to Mediate PRC1-Dependent Repression of Developmental Genes to Maintain ES Cell Identity
Two distinct Polycomb complexes, PRC1 and PRC2, collaborate to maintain epigenetic repression of key developmental loci in embryonic stem cells (ESCs). PRC1 and PRC2 have histone modifying activities, catalyzing mono-ubiquitination of histone H2A (H2AK119u1) and trimethylation of H3 lysine 27 (H3K27me3), respectively. Compared to H3K27me3, localization and the role of H2AK119u1 are not fully un...
متن کامل